tecadenoson (CVT-510)
/ Gilead
- LARVOL DELTA
Home
Next
Prev
1 to 4
Of
4
Go to page
1
February 28, 2023
Dual computational and biological assessment of some promising nucleoside analogs against the COVID-19-Omicron variant.
(PubMed, Comput Biol Chem)
- "Successive in silico screening of known NAs finally disclosed six different promising NAs, which are riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir, respectively, that predictably can act through the planned dual-action mode...The two NAs are able to effectively antagonize the replication of the new virulent SARS-CoV-2 strains with considerably minute in vitro anti-RdRp and anti-SARS-CoV-2 EC values of 189 and 408 nM for riboprine and 207 and 657 nM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir. Furthermore, the favorable structural characteristics of the two molecules qualify them for varied types of isosteric and analogistic chemical derivatization. In one word, the present important outcomes of this comprehensive dual study revealed the anticipating repurposing potentials of some known nucleosides, led by the two NAs riboprine and forodesine, to successfully discontinue the..."
Journal • Infectious Disease • Novel Coronavirus Disease • Respiratory Diseases
February 01, 2023
A Series of Adenosine Analogs as the First Efficacious Anti-SARS-CoV-2 Drugs against the B.1.1.529.4 Lineage: A Preclinical Repurposing Research Study.
(PubMed, ChemistrySelect)
- "Gradual computational filtration gave rise to six different promising NAs, which are riboprine, forodesine, tecadenoson, nelarabine, vidarabine, and maribavir, respectively. Further biological assessment proved for the first time, using the in vitro anti-RdRp/ExoN and anti-SARS-CoV-2 bioassays, that riboprine and forodesine, among all the six tested NAs, are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC values of about 0.22 and 0.49 μM for riboprine and about 0.25 and 0.73 μM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir...Additionally, the ideal pharmacophoric features of riboprine and forodesine molecules render them typical dual-action inhibitors of SARS-CoV-2 replication and proofreading, with their relatively flexible structures open for diverse types of chemical derivatization. In Brief, the current important..."
Journal • Preclinical • Infectious Disease • Novel Coronavirus Disease • Respiratory Diseases
January 04, 2023
Evaluation of a series of nucleoside analogs as effective anticoronaviral-2 drugs against the Omicron-B.1.1.529/BA.2 subvariant: A repurposing research study.
(PubMed, Med Chem Res)
- "Gradual computational filtration afforded six different promising NAs, riboprine/forodesine/tecadenoson/nelarabine/vidarabine/maribavir. Further biological assessment proved that riboprine and forodesine are able to powerfully inhibit the replication of the new virulent strains of SARS-CoV-2 with extremely minute in vitro anti-RdRp and anti-SARS-CoV-2 EC values of about 0.21 and 0.45 μM for riboprine and about 0.23 and 0.70 μM for forodesine, respectively, surpassing both remdesivir and the new anti-COVID-19 drug molnupiravir...These findings suggest that riboprine and forodesine could serve as prospective lead compounds against COVID-19. Graphical abstract."
Journal • Infectious Disease • Novel Coronavirus Disease • Respiratory Diseases
May 08, 2020
Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs.
(PubMed, FEBS Lett)
- "In order to assist structure-based discovery efforts for repurposing drugs against this disease, we constructed knowledge-based models of SARS-CoV-2 proteins and compared the ligand molecules in the template structures with approved/experimental drugs and components of natural medicines. Our theoretical models suggest several drugs, such as carfilzomib, sinefungin, tecadenoson, and trabodenoson, that could be further investigated for their potential for treating COVID-19."
Journal • Novel Coronavirus Disease
1 to 4
Of
4
Go to page
1